
vs

A Step-by-Step Guide 
to Migrating from Virtual
Machines to Containers

A Step-by-Step Guide 
to Migrating from Virtual
Machines to Containers
The application deployment landscape has undergone a significant
shift, with containerization emerging as a transformative approach.
Virtual Machines (VMs), while being effective, often come with certain
challenges and limitations. Containers, on the other hand, offer a
lightweight, portable and efficient approach to deploy applications at
scale, enabling organizations to move at a much faster pace and
iterate quickly.  

Recently, organizations have been migrating to containers due to
various reasons, including:

More efficient
resource

utilization

Rapid
deployment
and scaling

Improved
application
portability

Easy to 
setup across

environments

1

Understanding VMs and
containers
What are VMs?

VMs are software-defined environments that emulate physical
computers. They operate by creating an isolated, virtualized layer on
top of a physical host machine's hardware, allowing multiple virtual
computers to run independently on a single physical host. This
virtualization is managed by a hypervisor which allocates and
manages the host's physical resources like CPU, memory, storage, and
network interfaces among the virtual machines. Each virtual machine
runs its own operating system and applications. It is completely
unaware that it's sharing hardware resources with other VMs. This
isolation ensures that problems or crashes in one VM don't affect
others running on the same host.

What are containers?

Containers are lightweight, portable units designed to package an
application along with all its dependencies, configurations, and
libraries. This enables consistent deployment across different
computing environments. Unlike traditional virtual machines,
containers share the host operating system's kernel, making them
more efficient and faster to start up. This approach to application
packaging has revolutionized software deployment by ensuring that
applications run reliably when moved from one computing
environment to another, whether it's locally on a developer's laptop, a
test environment or staging/production environment on the cloud.
Containers achieve this consistency by bundling everything needed to
run the application – code, runtime, system tools, system libraries, and
settings – into a single, self-contained package.

2

VMs versus containers

Characteristic

Portability

Scalability

Isolation

Resource utilization

Boot time

Limited

Slow

High

Less efficient

Slower

VMs

Excellent

Rapid

Limited

Very efficient

Quicker

Containers

3

Pre-migration
considerations
1. Assess current applications

Identify applications suitable for containerization, considering factors
like statefulness, dependencies, and complexity.   

Some key points are�

� Stateless services are prime candidate�
� Micro-services architectures migrate easil�
� Legacy monolithic applications may require significant refactorin�
� Applications with complex OS-level dependencies need careful

evaluation

2. Set objectives

Define clear goals for the migration. These can be improved scalability,
faster deployment, or reduced operational costs.

Some key objectives to keep in mind are�

� Reduce infrastructure cost�
� Improve deployment spee�
� Enhance scalabilit�
� Increase development team productivit�
� Simplify infrastructure management

3. Choose the right tooling

Select tools like Docker for containerization, Kubernetes for
orchestration, and Helm for package management�

� Docker: Container creation and managemen�
� Kubernetes: Container orchestratio�
� Helm: Package management for Kubernete�
� Docker Compose: Local container developmen�
� CI/CD tools (Jenkins, GitLab CI, GitHub Actions)

4

https://www.docker.com/
https://kubernetes.io/

Preparing the
environment
1. Infrastructure and dependencies

Ensure that your infrastructure can support containerized workloads,
including sufficient CPU, memory, and network bandwidth. 

Some important requirements are�

� Sufficient compute resource�
� Container-optimized operating system�
� Network configuration supporting container networkin�
� Storage solutions compatible with container persistent storage

2. Select a container runtime

Choose a runtime like Docker or containerd to execute container images.  

The most commonly used container runtimes are�

� Docker: Most popular, industry leader and feature-ric�
� Containerd: Lightweight, CNCF-graduated runtim�
� CRI-O: Kubernetes-focused runtim�
� Podman: Daemonless alternative to Docker

3. Set up orchestration with Kubernetes

Deploy Kubernetes to manage and scale containerized applications.
The process of setting up container orchestration using Kubernetes is
as follows�

�� Choose managed or self-hosted Kubernete�

�� Configure cluster networkin�

�� Set up persistent storag�

�� Implement role-based access control (RBAC�

�� Configure monitoring and logging

5

Step-by-step migration
process
Step 1: Plan the migration 
Identify applications to prioritize and create a detailed migration plan.

A. Create a comprehensive inventory of existing applications

Document all applications with details critical for containerization, such
as their runtime environments, base operating systems, configuration
files, environment variables, storage requirements, and network
dependencies. Note which applications are already using technologies
that work well with containers (stateless services or microservices)
versus those that might need refactoring (monoliths with local file
system dependencies). Also identify applications that use specific ports,
require special hardware access, or have strict performance
requirements.

B. Categorize applications by complexity and migration difficulty

Assess each application's containerization readiness by examining:
whether they can run in isolated environments, their state
management requirements, external dependencies, build processes,
and deployment procedures. For example, stateless web applications
are typically easier to containerize than applications that require shared
file systems.

C. Prioritize applications with minimal dependencies

Start with applications that are naturally container-friendly. Generally,
newer applications that are built with modern frameworks that are
stateless and have well-defined API interfaces. These include - web
services, static content websites, API based backend services etc.

6

D. Create a phased migration roadmap

Develop a timeline that includes container-specific milestones like�

� Setting up a container orchestration platform like Kubernetes�
� Establishing container registry and image management processes�
� Creating base container images and standardizing Dockerfile

templates�
� Implementing container security scanning, monitoring and logging�
� Setting up container monitoring and logging�
� Training teams on container technologies and best practices. Each

phase should include testing container configurations, validating
application performance in containers, and ensuring proper
resource allocation.
 

Naviteq's DevOps services, including Kubernetes management, 
can help you significantly in this regard and streamline your
containerization efforts. By leveraging Naviteq's expertise, your team
can gain the necessary skills to successfully adopt container
technologies and achieve significant benefits in terms of agility,
scalability, and efficiency.

7

https://www.naviteq.io/services/kubernetes-cluster-management/

Step 2: Create container images 
Use Dockerfiles to define the environment and dependencies for each
application.

A. Use multi-stage Dockerfiles for efficient builds

Multi-stage builds separate the build environment from the runtime
environment, significantly reducing final image size. 
Structure your Dockerfile with multiple FROM statements where�

� The first stage contains all build tools, SDKs, and dependencies
needed for compilation�

� Subsequent stages copy only the necessary artifacts from the build
stage�

� The final stage includes runtime dependencies and application
binaries. For example, a Java application might use Maven in the
build stage but only need a JRE in the runtime stage. This approach
can reduce image size significantly and remove potential security
vulnerabilities from build tools.

B. Minimize image size

Keep images lean by implementing several key practices�

� Remove unnecessary files, caches, and temporary data in the same

layer where they are created�

� Use .dockerignore to exclude irrelevant files from the build context�

� Chain RUN commands with && to reduce layer count�

� Clean package manager caches (apt-get clean, rm -rf /var/ 

cache/yum)�

� Use minimal slim or alpine base images when appropriate�

� Only install required packages and dependencies�

� Remove build dependencies in multi-stage builds.

8

C. Implement best practices for image security

Focus on building secure images from the ground up. Use the
following best practices�

� Run containers as non-root users�
� Set filesystem and volume permissions appropriately�
� Regularly update base images to patch security vulnerabilities�
� Use COPY instead of ADD to prevent remote file injection�
� Specify exact versions of base images and dependencies�
� Implement resource limits and constraints�
� Scan images for known vulnerabilities using tools like Trivy or Snyk�
� Use proper secrets management solutions.

D. Use tools like Kaniko for secure image building

Kaniko offers several advantages for secure container builds. Its
offerings are�

� Builds images in userspace without requiring Docker daemon�

� Runs in unprivileged containers�

� Supports building images directly to remote registries�

� Integrates well with CI/CD pipelines�

� Provides cache support for faster builds�

� Ensures consistent and reproducible builds�

� Offers detailed build logging and debugging capabilities.

E. Leverage official base images when possible

Official base images provide several benefits�

� Regular security updates and patches�

� Well-documented and maintained�

� Verified builds with known provenance�

� Optimized for common use cases�

� Consistent across environments.

9

https://trivy.dev/v0.29.2/docs/kubernetes/cli/scanning/
https://snyk.io/
https://github.com/GoogleContainerTools/kaniko

Step 3: Test containerized applications

Thoroughly test containerized applications in a testing and staging
environment to identify and address issues proactively.

A. Unit testing containerized components

Test individual components within containers to verify isolated
functionality. Some things to keep in mind are�

� Write tests that can run within the container environment�
� Verify component behavior with mocked dependencies�
� Test configuration management and environment variable

handling�
� Validate container startup scripts and initialization processes�
� Check error handling and logging mechanisms�
� Ensure proper resource cleanup on container shutdown.

B. Integration testing in staging environment

Focus on testing how containerized applications work together in a
staging environment. Some key points to keep in mind are�

� Test service discovery and inter-container communication�
� Verify container orchestration behaviors (scaling, failover, rolling

updates)�
� Test network policies and service mesh configurations�
� Validate persistent storage interactions�
� Check load balancing and service routing�
� Test container restart and recovery scenarios�
� Ensure proper secrets management and configuration injection.

C. Performance benchmarking

Measure and compare performance metrics between containerized
and non-containerized versions of the application. Some performance
indicators to check for�

� Response time and latency under different load conditions�
� Resource utilization - CPU, memory, network and disk I/O�
� Container startup and scaling times�
� Database connection pooling effectiveness�
� Network throughput between containers.

10

D. Security scanning of container images

Implement comprehensive security checks�

� Scan base images and dependencies for known vulnerabilities�
� Check for sensitive data exposure in image layers�
� Verify compliance with security policies�
� Test container runtime security settings�
� Validate network security policies�
� Verify secure configuration of container runtime Use tools like Trivy,

Clair for automated scanning.

E. Compatibility testing across different environments

Ensure consistent behavior across different platforms and
configurations. To ensure this follow the points mentioned below�

� Test on different container orchestration platforms like 
Kubernetes, ECS etc�

� Verify functionality across different cloud providers if applicable�
� Test with different storage classes and volume types�
� Validate networking in different subnet configurations�
� Check compatibility with different monitoring solutions�
� Ensure consistent logging across platforms.

Step 4: Implement orchestration with Helm

Use Helm charts to package and deploy applications to Kubernetes. To
implement orchestration with Helm, you'll first need to create a chart
structure which includes a Chart.yaml file that defines metadata, a
values.yaml file for configurable parameters, and templates directory
containing Kubernetes manifest templates.

The process of creating a Basic Chart Structure is as follows�

�� Initialize a new chart with helm create chartname�
�� Organize files into required directories (templates/, charts/)�
�� Define chart metadata in Chart.yaml including dependencies�
�� Create default values in values.yaml�
�� Set up helpers in _helpers.tpl�
�� Include README.md with usage instructions and configuration

details.

11

https://github.com/quay/clair
https://kubernetes.io/
https://aws.amazon.com/ecs/
https://helm.sh/

Step 5: Deploy to production

Carefully deploy containerized applications to production, monitoring
their performance and health. You can use the following deployment
strategies:

A. Use blue-green or canary deployment strategies

Implement progressive deployment patterns to minimize risk and
downtime. In blue-green deployments - maintain two identical
environments (blue and green) where one serves production traffic
while the other receives updates. Switch traffic gradually between
environments using service mesh or ingress controllers. For canary
deployments, release new versions to a small subset of users first e.g.,
5-10% of traffic. Monitor this change for issues and gradually increase
traffic to the new version. Define clear metrics and thresholds for
automated rollback triggers.

B. Implement robust monitoring

Set up comprehensive monitoring across all layers of the containerized
infrastructure. Deploy Prometheus for metrics collection and Grafana
for visualization. Monitor key metrics like container resource usage,
application response times, error rates, and business KPIs. Create
custom dashboards for different stakeholder needs DevOps engineers,
IT Managers etc. Implement alerting with proper thresholds and
escalation paths and set up distributed tracing with tools like Jaeger to
track requests across services.

C. Configure auto-scaling

Establish horizontal pod autoscaling (HPA) based on custom metrics
and resource utilization. Define scaling policies that account for both
application-specific metrics like requests per second, queue length etc.
and resource metrics like CPU, memory usage etc. Set appropriate
minimum and maximum replica counts based on application
requirements and implement cluster autoscaling to handle pod
scheduling demands. Lastly, test scaling behavior under various load
conditions to verify proper operation.

12

https://prometheus.io/
https://grafana.com/
https://www.jaegertracing.io/

D. Set up centralized logging

Implement a unified logging solution using tools like Elasticsearch,
Fluentd etc. To ensure effective log management in your containerized
environment, implement a comprehensive log aggregation strategy.
Centralize logs from all containers and cluster components to a unified
logging platform. Establish robust log retention policies and configure
log rotation to optimize storage usage. Standardize log formats across
applications to facilitate parsing and analysis. Implement log-based
alerting for critical events to enable timely response. Prioritize log
security by enforcing strict access controls. Lastly, consider compliance
requirements for log retention and the handling of sensitive data.

E. Establish rollback mechanisms

Create comprehensive rollback procedures for all deployment
components. Maintain versioned copies of all configurations and
container images. Implement automated rollback triggers based on
monitoring metrics and document rollback procedures clearly,
including manual intervention steps if needed. Lastly, configure your
continuous delivery pipeline to support rapid rollbacks positively.

13

https://www.elastic.co/elasticsearch
https://www.fluentd.org/

Key challenges and
solutions
Some key challenges and solutions with the migration and
containerizing applications are:

Handling state and storage

Handling state and storage is tricky while migrating to containerized
applications. These challenges can be resolved by using the following
approaches:

Persistent volumes

Use persistent volumes for storing application data and design
applications to be stateless whenever possible. Persistent volumes
provide a critical solution for maintaining application data integrity
during container migrations. By decoupling storage from the container
lifecycle, organizations can ensure data persistence even when
individual containers are destroyed and recreated. This approach allows
stateful data to be preserved across container restarts and node
migrations, enabling more flexible and reliable application deployment.

Using stateful sets for stateful applications

Kubernetes StatefulSets offer specialized handling for stateful
applications that require stable, unique network identifiers and
persistent storage. Unlike standard deployments, StatefulSets maintain
a stable hostname and persistent storage volume for each pod,
ensuring consistent state management for databases, message
queues, and other stateful services.

Using external storage providers

External storage providers enable organizations to leverage specialized
storage solutions that integrate seamlessly with containerized
environments. Cloud-native storage platforms like Amazon EBS,
Google Persistent Disk, and Azure Disk Storage offer scalable, high-
performance storage options that can be dynamically provisioned and
attached to containers. These providers support features like automatic
volume creation, dynamic provisioning, snapshot management, and
cross-zone replication.

14

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://aws.amazon.com/ebs/
https://cloud.google.com/persistent-disk/?hl=en
https://azure.microsoft.com/en-us/products/storage/disks

Using database-specific migration approaches

Migrating databases to containerized environments requires tailored
strategies that address each database system's unique characteristics.
For relational databases like PostgreSQL and MySQL, approaches
include using official container images, implementing custom
initialization scripts, and configuring persistent volumes for data
storage. NoSQL databases like MongoDB and Cassandra benefit from
StatefulSet configurations that maintain data consistency and node
identity.

15

Security considerations
Implement robust security measures, including image scanning, secret
management, and network security. These challenges can be resolved
by using the following approaches:

Scan container images for vulnerabilities

Container image scanning is a critical security practice that
systematically identifies potential security risks and vulnerabilities
within container images before deployment. Automated scanning
tools like Clair, Trivy, and Anchore analyze images against
comprehensive vulnerability databases, checking for known security
issues, outdated dependencies, and potential exploits. These tools
provide detailed reports highlighting critical vulnerabilities and
recommend remediation steps.

Use minimal base images

Utilizing minimal base images significantly reduces the attack surface
and potential vulnerabilities in container deployments. Lightweight
images like Alpine Linux, Distroless, and Ubuntu Minimal provide
essential functionality with minimal additional packages and system
components.

Implement secrets management

Effective secrets management ensures sensitive information like
credentials, API keys, and configuration data are securely stored and
accessed. Kubernetes offers native secrets management through
Secret objects, while external tools like HashiCorp Vault provide
advanced encryption and access control.

Configure network policies

Network policies provide granular control over container
communication, defining allowed ingress and egress traffic patterns.
Kubernetes Network Policies enable administrators to isolate container
namespaces, control pod-to-pod communication and restrict external
network access.

Use runtime security tools

Runtime security tools provide real-time monitoring, threat detection,
and protective measures for containerized environments. Solutions like
Falco offer continuous container monitoring, anomaly detection and
integrations with SIEM systems.

16

https://anchore.com/kubernetes/
https://www.hashicorp.com/products/vault

Managing complexity with Helm and GitOps

Utilize Helm and GitOps tools like ArgoCD to automate deployment
and configuration management.

Helm for package management

Helm serves as a powerful Kubernetes package manager, enabling
organizations to define, install, and upgrade complex Kubernetes
applications. It provides a powerful mechanism for creating
standardized, reusable Kubernetes application deployments by offering
comprehensive features like - managing resource dependencies,
supporting extensive parameterization and configuration
customization, and facilitating advanced version management with
robust rollback capabilities. Through sophisticated templating, Helm
simplifies the deployment of complex applications, while
simultaneously providing a centralized repository infrastructure that
enables efficient sharing and distribution of application configurations
across development teams and organizations.

ArgoCD for GitOps workflows

ArgoCD implements declarative, Git-based continuous delivery for
Kubernetes that enables automated synchronization between Git
repositories and cluster states. ArgoCD revolutionizes Kubernetes
deployments through automated manifest synchronization and
version-controlled infrastructure management which provides
comprehensive support for multiple cluster configurations with robust
rollback and history tracking capabilities. The platform offers intuitive
visualization of application deployment status and integrates
seamlessly with existing CI/CD pipelines.

17

https://argo-cd.readthedocs.io/en/stable/

Prometheus for monitoring

Prometheus provides robust, open-source monitoring and alerting for
containerized environments. Prometheus provides robust monitoring
for containerized environments by collecting and storing time-series
metrics through multi-dimensional data collection. It has a powerful
query language (PromQL), and generates real-time alerts and
notifications. Its capabilities include providing comprehensive and
flexible monitoring solutions for complex distributed systems.

Grafana for visualization

Grafana offers advanced observability and visualization capabilities for
metrics collected from various sources. It provides interactive,
customizable dashboards that support multiple data source
integrations, enabling complex data visualization and analysis. Its
features include implementing advanced querying and transformation
techniques, generating real-time alerts and notifications, and providing
robust role-based access control.

18

https://prometheus.io/
https://grafana.com/

Post-migration best
practices
The following are some recommended post-migration best practices:

Versioning and tagging containers

Use semantic versioning to manage container image versions.

Some best practices are:

� Implement immutable infrastructure principles where once a
service is deployed, it’s never modified. This makes rollbacks simpler,
increases reliability and improves security of the deployments.�

� Create a well-structured tagging strategy to efficiently organize and
retrieve resources. This includes - consistent naming convention,
descriptive tags for resource categorization, designing tagging
conventions that can be modified as the organization grows,
regularly review and update tagging strategies etc�

� Automate version management to streamline the release process by
automating tasks like - version number determination, changelog
generation and package publishing.

Monitoring and ongoing optimization
It’s a good practice to continuously monitor and optimize containerized
applications to ensure that they are running efficiently�

� Regularly perform audits to detect any anomalies in the systems�
� Focus on resource utilization analysis to optimize deployment and

to keep resource wastage in check�
� Keep rightsizing applications to ensure every container has the right

amount of CPU and memory to perform efficiently without being
under or over provisioned�

� Always try to stay up-to-date with container ecosystem
developments.

19

Conclusion
The migration from virtual machines to containers is a strategic move
that can significantly enhance an organization's IT infrastructure. By
adopting containerization technologies, businesses can streamline
application deployment, improve scalability, and boost operational
efficiency.  

However, such a transition requires careful planning and execution. It
involves a comprehensive assessment of applications, selection of
suitable containerization platforms, and implementation of robust
orchestration strategies. Leveraging a managed platform like Naviteq
can greatly simplify this process. With a team of experts and a suite of
services including DevOps as a Service, Kubernetes Management, and
CI/CD pipelines, Naviteq can help organizations accelerate their
containerization journey. By offloading the complexities of container
orchestration and management, businesses can focus on their core
competencies and drive innovation. 

This migration process involves several critical considerations. While it
is recommended that you leverage support from industry
professionals such as Naviteq, here’s a short checklist you can follow:

� Assess applications: Identify suitable applications, evaluate
dependencies, and assess performance impact�

� Select a platform: Choose a containerization platform like Docker,
considering factors like scalability, security, and ease of
management�

� Refactor applications: Address dependencies, break down
monolithic applications into microservices, optimize configurations,
and package applications into container images�

� Implement orchestration: Select an orchestration tool like
Kubernetes, define deployment and scaling strategies, configure
network and storage solutions, and implement monitoring and
logging.

20

https://www.naviteq.io/
https://www.naviteq.io/services/devops-as-a-service/
https://www.naviteq.io/services/kubernetes-cluster-management/
https://www.naviteq.io/services/ci-cd-pipelines/

� Prioritize security: Implement robust security measures, secure
container images and registries, enforce access controls, and
regularly update and patch�

� Test and deploy: Thoroughly test containerized applications,
establish a CI/CD pipeline, and develop strategies for production
rollout�

� Monitor and manage: Implement monitoring tools, establish
incident response procedures, and continuously optimize container
configurations and resource utilization.

21

Transform Your 
DevOps with Naviteq
Ready to optimize your DevOps processes and drive efficiency?
Naviteq’s experts specialize in streamlining application deployment,
improving scalability, and implementing cutting-edge tools like
Kubernetes, Helm, and CI/CD pipelines.

Whether you're refining your workflows or starting fresh, we’ll help you
build agile, secure, and scalable systems that support your growth. Let
Naviteq simplify the complexities of DevOps so you can focus on
innovation.
 

 to explore tailored solutions that align with your
goals and set you up for long-term success!
Contact us today

22

https://www.naviteq.io/contacts

